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The p r o c e s s  of propagat ion  of long-wave d is turbances  is modeled numer i ca l ly  in the a r t i c le  
within the f r a m e w o r k  of the B u r g e r s - K o r t e w e g - d e  Vr ie s  equation, allowing for  low-f requency  
absorpt ion.  Poss ib le  i somorphous  solutions a re  examined.  

The propagat ion  of long-wave d is turbances  of final ampli tude U in a medium having cubic d i spers ion  
is desc r ibed  by the Kor teweg-de  Vr i e s  equation [1-3] 

vt  + uu~ + f i v ~  = o (1) 

If the re  is d iss ipat ion in the medium, then along with (1) we have 

Ut + UUx + ~Uxxx -- aUxx + ~U = 0 (2) 

The last two terms in (2) determine the high-frequency and low-frequency absorption. Equation (2) 
and modifications of it are obtained in an examination of the evolution of disturbances in a plasma, at the 
surface of a liquid, in a biphasic medium, in a medium containing heterogeneities, etc. [1-7]. 

When d i spers ion  and h igh-f requency absorpt ion  are  absent  (fl = a = 0), we have f rom (2) 

Ut + UU:, + ~U = 0 (3) 

Let  us obtain an i somorphous  solution for  th is  equation. Af te r  the subst i tut ions 

Eq. (3) t akes  the f o r m  
: xexp(yt) ,  U :  exp(~ t )~ ( [ )  

2 ~ + ~ r  ~ = e x p ( 2 v t ) ? - I  

Let  us introduce q = g r  Then f rom (4) we obtain 

2 ~ q - ( ~  +q0) q % = 0  

This  is an Abel equation of the second kind, which involves only i somorphous  va r i ab le s .  

If  we exclude the case  of r = 0, we obtain for  the function ~ = ~(r the equation 

d E i i 

Its solution is 

(4) 

(5) 

(6) 

= c ~-'/, - - ~ / 3  (7) 

where  C is a constant  of integrat ion.  

F r o m  (7) one can find ~. Let  fi =7  =0. Then (2) is conver ted  into the wel l -known Burge r s  equation 

Ut + UUx  - -  a U : ~  - -  0 (8) 
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It is e a s y  to  show that  (8) has  an i s o m o r p h o u s  solut ion of  the f o r m  

U (x, t) = a (2 at)-'/'@ [x (2 at)-'~l 

Subst i tut ing (9) into (8) we obtain an equat ion fo r  

d~  d~) dt~ 

(9) 

(lO) 

When the ampl i tude  of  the  d i s tu rbance  is sma l l  enough and the non l inea r  t e r m  in (10) can be neg lec ted  
we have 

(11) 

where  C 1 and C 2 a r e  cons tan t s  of  in tegra t ion .  

In the gene ra l  case  (10) the subs t i tu t ion  

l eads  to  the Rikkat  equa t ion  

The subs t i tu t ion  

g ives  

If r = ~ ' = 0  at 

y = (~ - - , ) / 2  (12) 

y ' + y ~ =  1 / 2 + ~ 1 2 / 4 +  C (13) 

z = exp (j' y dq) (14) 

z" = (1/z + ~ / 4 + C) z 

=0, it fol lows f rom (12) and (13) tha t  C = - 1 / 2 .  Then 

z = A,]/-~ J,,, (iq~ / 4) + A2I/ '~Y, ,  (iq z / 4) 

w h e r e  A 1 and A 2 a r e  d e t e r m i n e d  f r o m  the ini t ial  and b o u n d a r y  condi t ions  and J1/4 and Yl/4 a r e  Bes se l  
funct ions .  

If the ini t ial  condi t ions  a r e  such tha t  the cons tan t  C in (15) is z e ro ,  then 

(15) 

(16) 

z = e'~', ~(B~ -t- B21e-~'.'adq) (17) 

Knowing z, one can  d e t e r m i n e  r us ing  (12) and (14). Equat ion  (15) is not i n t eg ra t ed  in q u a d r a t u r e s  
for  o the r  va lues  of  C. 

Le t  us c l a r i f y  the p h y s i c a l  mean ing  of  the  i s o m o r p h o u s  solut ion of Eq.  (8). Suppose a d i s t r ibu t ion  
with a c h a r a c t e r i s t i c  ampl i tude  U 0 and a c h a r a c t e r i s t i c  d imens ion  ~ is given as  the ini t ial  condi t ion for  
(8). Let  us  in t roduce  the d i m e n s i o n l e s s  va lue s  
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Then the l imi t ing  solut ion has the f o r m  of (9). 

�9 = U o t / k ,  y = x / X ,  v =  U / U o  

F r o m  (8) we obtain 

v. + vv v - - v - l v v v  = O, v = U~X / 

Let  us c o n s i d e r  a s u c c e s s i o n  of  init ial  d i s t u rbances  for  which  X ~ 0 but 
the quant i ty  U0X r e m a i n s  constant .  Then  fo r  an ident ical  va lue  of  a the  
so lu t ions  of  Eq. (8) should  be s i m i l a r ,  s ince  v =const ;  h e n c e , t h e  l imi t ing  
solut ion can conta in  only  a combina t ion  of p a r a m e t e r s  having the d imen-  
s iona l i ty  of  length and ve loc i ty .  In the B u r g e r s  equat ion this p a r a m e t e r  

It can  be shown that  the init ial  d i s tu rbance  leading to 

U (x, 0) = ~v~5 (x) 

where  5 (x) is the del ta  function.  
5 (x) we have 

Actua l ly ,  if A is an a r b i t r a r y  cons tant ,  then  us ing one r e p r e s e n t a t i o n  of  

A8 (x) = lim (A)~g -1 / (x ~ + s 

H e r e  A/X is the c h a r a c t e r i s t i c  ve loc i t y  U0, whe re  U0X =A =cons t .  But UCX = a v,  so  tha t  A = a  v. 
Thus ,  the phys i ca l  mean ing  of  the i s o m o r p h o u s  so lu t ion  of  (8) of  the  B u r g e r s  equa t ion  c o n s i s t s  in a d e s c r i p -  
t ion  of  the p ropaga t ion  o f  init ial  d i s t u rba nc e s  of  the type  

U (x, 0) ~ ~ ( ~ :  )~) at x ' ~ k ,  t t ' 2 ~ l z C  '~ 

The phys i ca l  mean ing  of  the i s o m o r p h o u s  solut ion of  the K o r t e w e g - d e  V r i e s  equat ion,  which is d i s -  
c u s s e d  below, is e s t ab l i shed  in a s i m i l a r  way  in [2]. The l s o m o r p h o u s  solut ion ~ (~)  o f  Eq. (5) and the so lu -  
t ion  (11) of  Eq. (10) a r e  i l l u s t r a t ed  in Fig.  l a  and b, r e spec t i ve ly .  It is seen f r o m  Fig. l a  that  ~ (~) has  

- I  
mean ing  when ~ >>1, i .e. ,  x>>X a n d t  >>y 

When the re  is no d i s s ipa t ion  in the med ium the p ropaga t ion  of the d i s tu rbance  is d e s c r i b e d  by  the 
K o r t e w e g - d e  V r i e s  equat ion  (1). It is shown in [2] tha t  Eq. (1) is sa t i s f i ed  by the fol lowing i s o m o r p h o u s  
solut ion:  

U (x, t) = ~ (3 ~t)J.'.,)~ [x (3 ~t)-'q (18) 

Subst i tut ing (18) into (1) g ives  an equat ion  fo r  

X" --  ~;~' + %~' - - 2 X =  O, ~ = x(3~t)-':~ (19) 

If the damping  as  ~ ~oo  of  the solut ion (19) is c o n s i d e r e d  as  exponent ia l ,  then 

(~) ~_ BdAi(~) /d~ as ~-~ oo (20) 

where  Ai (~) is the A i r y  funct ion and B is a constant .  

The b e h a v i o r  of  • (~) at negat ive and sma l l  pos i t ive  va lues  of  ~ is found in [2] by n u m e r i c a l  i n t e g r a -  
t ion  o f  (19) at pos i t ive  va lues  o f  B. The behav io r  o f  • (~) at  negat ive va lues  of  B is a l so  c l a r i f i ed  in this  
a r t i c l e  (Fig.  2). The so lu t ions  fo r  B < 0 and B > 0 d i f fer  m a r k e d l y  i n t h e v i c i n i t y o f t h e o r i g i n o f c o o r d i n a t e s ~  
F o r  B < B ,  the funct ion • (~) fo r  negat ive  ~ o sc i l l a t e s  with s l o w l y - i n c r e a s i n g  ampl i tude .  F o r  B > B. 
the solut ions  ?{ have a s ingula r i ty .  As  n u m e r i c a l  e x p e r i m e n t s  show, 

B! +) ~ --  B~-) = 3.35 

Let  us move to an examina t ion  o f  the n o n s t a t i o n a r y  solut ions  of  Eq. (2). 

In [6, 7] c o r r e c t i o n s  a re  found to the s t a t i ona ry  solut ion of  Eq. (1), when the d i s s ipa t ive  t e r m s  in (2) 
a re  sma l l  and the wave obta ined  is c lose  to cnoidal .  Using n u m e r i c a l  in tegra t ion  a solut ion is found in 
the p r e s e n t  w o r k  fo r  Eq. (2) f o r  d i f fe ren t  r a t i o s  between the d i s p e r s i o n  coef f ic ien t  fi and the abso rp t ion  
p a r a m e t e r s  a and y.  

The Gauss ian  d i s t r ibu t ion  

U (x, O) -- a0 exp[ - - (x  - -Xo)~/ l  ~] (21) 

was  se t  as  an init ial  condit ion fo r  (2). 
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The fol lowing p e r i o d i c  boundary  condi t ions  w e r e  c o n s i d e r e d :  

U (x, t)== U (x-~ L, t) (22) 

To c l a r i fy  the p r o b l e m  of the  s t r u c t u r e  of  the s p e c t r u m  of the  d i s tu rbance ,  the solut ion of  Eq. (2) o b -  
ta ined  was  expanded in a F o u r i e r  s e r i e s  

N 

U (x, t) := ~ UI~ exp (2~kx /L )  (23) 

The n u m b e r  N of  h a r m o n i c s  was  chosen  in such a way  that  the  wavelength  X N = L / 2  7rN of  the N- th  
h a r m o n i c  was  many  t i m e s  g r e a t e r  than the spa t ia l  s tep in in tegra t ion .  

To t e s t  the c o r r e c t n e s s  of  the ca lcu la t ions  a s o l i t a r y  s t a t i ona ry  solut ion of  the K o r t e w e g - d e  V r i e s  
equat ion  [1-3] was  set  up as  the init ial  d i s t r ibu t ion  for  Eq. (2) at  a = ~  =0: 

U (x, 0) ~ a sech 2 (a/t2 ~)'~ (x --  x0) (24) 

Its v a r i a t i o n  with t i m e  did not exceed  the e r r o r  in in tegra t ing  Eq. (2). The a c c u r a c y  of the c o m p u t a -  
t ion  was  con t ro l l ed  by c o n s e r v a t i o n  laws.  At (~ = y  =0 the conse rva t i on  of  the f i r s t  two invar i an t s  of  Eq. (1) 
was  t e s t ed :  

I ,  L 

]1 ! U dx, ].2 = ! U2 dx 
o o 

The g r e a t e s t  r e l a t i ve  e r r o r s  in the c o u r s e  of  the ca lcu la t ions  were  as  fol lows:  

A J1 / J1 ~ 3"t0-6, A Y2 / Y~ ~-~ 5 "t0-3 

The law of v a r i a t i o n  of  the wave impulse  with t ime  was  checked  in the gene ra l  case  (a ~ 0, T ~ 0): 

L L 

f U (x, t) dx -- exp (-- ~'t) ! U (x, O) dx 
0 0 

The d i s p e r s i o n  p a r a m e t e r  fl, the ampl i tude  a0, and the width l of the init ial  d i s t r ibu t ion  (21) w e r e  
chosen  in such a way  that  the s i m i l a r i t y  p a r a m e t e r  ~ =(aol2 / f i ) l f i  was  both g r e a t e r  and s m a l l e r  than 

, = 4 - ~  [21. 

In the case of very large ~ (ff >> ~,) a set of solitons [2, 3] is formed. The dependence of the square ofthe 
Fourier component Uk 2 of the solution on time at if2 =7.5" 105, ~ =10 -4, ands/ =0 is shown in Fig. 3a, b. 
It is seen that the relative contribution of the first harmonics (k=l, 2, 3) decreases with an increase in t, 
while that of the higher harmonics (k =6, 7) increases. The same thing happens at q2 =9. The behavior 
of Uk2(t) in the case of a conservative medium (a =~/ =0) is shown by dashed lines. 

Thus, hlgh-frequency absorption "destabilizes" the wave of excitation. This has been observed ex- 
perimentally, for example, in the propagation of sound in a biphasic medium consisting of a liquid and gas 
bubbles [5]. The situation is qualitatively the same for positive dispersion also. Destabilization of the 
wave can be interpreted qualitatively using the stationary solution of Eq. (2). 
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Let  us shift  to the va r i ab le  r = x , V t ,  set t ing 7 =0 and integrat ing the equation obtained once with the 
condition U =U'  = U "  as  x --- ~ ,  obtaining 

f~U ~ - a v '  + U ~ / 2 - VU= O (25) 

It follows from an analysis of this equation [2] that if ~ > ~, = (4 flV) I/2, the profile of the wave be- 
comes oscillatory. This can be generalized qualitatively to the case when the wave differs little from a 
stationary wave. 

The numerical experiments show that the frequency of the oscillations increases in the process of 
evolution. This occurs mainly in the region where U > 0. Because of the law of conservation of an impulse 
(at T =0) the area of the initial disturbance is conserved. Therefore, the amplitude of the oscillations grows 
with a decrease in their wavelength. The role of the nonlinear effects intensifies with an increase in ampli- 
tude, which leads to further driving of the high-frequency oscillations. 

The computation was conducted to the point where the wavelength of the oscillations was much 
greater than the step in integration with respect to x. Generally speaking, Eq. (2) becomes inapplicable on 
the appearance of short-wave oscillations. Therefore,the examination of the evolution of high-frequency 
oscillations has a qualitative character for the most part. 

In the presence of low-frequency absorption the solutions of Eq. (2) become smoothedout. If ~= 0and 
the amplitude of the disturbance is small enough that nonlinear effects can be neglected, it is seen from (2) 
that U ~ exp (-Tt). When ~ # 0, the term containing T in Eq. (2) stops or at least slows the destabilization 
of the wave depending on the relationship between the quantities ~, fl, and T- This is confirmed by numeri- 
cal experiments. We note that the effect of destabilization of a monochromatic wave in a nonlinear medium 
having high-frequency absorption is analogous to "dissipative" instability of a wave in dielectrics and in a 
plasma [8, 9]. 

The author thanks S. L. Musher for helpful discussions. 
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