EVOLUTION OF NONLINEAR WAVES IN A DISSIPATIVE
MEDIUM WITH DISPERSION

V. V. Sobolev UDC 534.21
The process of propagation of long-wave disturbances is modeled numerically in the article

within the framework of the Burgers—Korteweg—de Vries equation, allowing for low-frequency
absorption. Possible isomorphous solutions are examined.

The propagation of long-wave disturbances of final amplitude U in a medium having cubic dispersion
is described by the Korteweg-de Vries equation [1-3]

U+ UUy + pUgpe = 0 (1)
If there is dissipation in the medium, then along with (1) we have
Ui+ UUs + pUsxs — aUss + 30U = 0 @)

The last two terms in (2) determine the high-frequency and low-frequency absorption. Equation (2)
and modifications of it are obtained in an examination of the evolution of disturbances in a plasma, at the
surface of a liquid, in a biphasic medium, in a2 medium containing heterogeneities, ete. [1-7].

When dispersion and high-frequency absorption are absent (8 = « =0), we have from (2)
Ui+ UU.+ U =0 @)
Let us obtain an isomorphous solution for this equation. After the substitutions
E=zexp(vt), U=exp (v (E)
Eq. (3) takes the form _
29 + B + ppyz = 0, p = exp 2 y2) v “)

Let us introduce ¢ =uy. Then from (4) we obtain
29+ E+Po:=0 (5)

This is an Abel equation of the second kind, which involves only isomorphous variables.

If we exclude the case of ¢ = 0, we obtain for the function £ =£(¢) the equation

dg 1. 1

¢ TwEiT T ©
Tts solution is

E=Co'—q/3 (7)

where C is a constant of integration.
From (7) one can find ¢. Let 8 =y =0. Then (2) is converted into the well-known Burgers equation
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Fig. 1

It is easy to show that (8) has an isomorphous solution of the form
Uz, ) = a (2 a) ey [z (2 aty™] (9
Substituting (9) into (8) we obtain an equation for

YD g0, m=a (e (10)

When the amplitude of the disturbance is small enough and the nonlinear term in (10) can be neglected
we have

P o= e '2(C1 L, Se‘ﬂ“"dn) (11)

where C; and C, are constants of integration.

In the general case (10) the substitution

y=M0—v/2 (12)
leads to the Rikkat equation
Y+ ="+n/4+C (13)
The substitution
z = exp (J y dn) (14)
gives
=+ 44+ 0z (15)
If p =¢*=0at n =0, it follows from (12) and (13) that C=—1/2. Then
2= A,V T (in?/ %) + AV Y, (in*/ 4) (16)

where A; and A, are determined from the ifnitial and boundary conditions and J, 4 and Y/, are Bessel
functions.

If the initial conditions are such that the constant C in (15) is zero, then
3 = e 4(31 + B, Se“*"f‘ldn) )

Knowing z, one can determine ¥ using (12) and (14). Equation (15) is not integrated in quadratures
for other values of C.

Let us clarify the physical meaning of the isomorphous solution of Eq. (8). Suppose a distribution
with a characteristic amplitude U, and a characteristic dimension A is given as the initial condition for
{8). Let us introduce the dimensionless values
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& t=Up/h y=z/r v=U/U,
e
ARG AL From (8) we obtain

M‘ \ k ‘ \\] \7[ \/\j/ﬂ et vy —voyy =0, v=Ul/a

1\! i \ J Ty /_/ Let us consider a succession of initial disturbances for which A —~ 0 but

L ‘f ' /f / ) the quantity UyA remains constant. Then for an identical value of « the
I solutions of Eq. (8) should be similar, since v =const; hence,the limiting

Fig. 2 solution can contain only a combination of parameters having the dimen-
sionality of length and velocity. In the Burgers equation this parameter
is &, Then the limiting solution has the form of (9). It can be shown that the initial disturbance leading to
(9) is
’ U (x, 0) = avé (2)

where 6(x) is the delta function. Actually, if A is an arbitrary constant, then using one representation of
8 (x) we have

A8 (z) = lim (Ahat / (2 + A2))
r—>0

Here A /A is the characteristic velocity U,, where U\ =A =const. But U =av, sothat A=av.
Thus, the physical meaning of the isomorphous solution of (8) of the Burgers equation consists in a descrip-
tion of the propagation of initial disturbances of the type

Uz, 0)= TW'— at z3A S

232

The physical meaning of the isomorphous solution of the Korteweg—de Vries equation, which is dis-
cussed below, is established in a similar way in [2]. The isomorphous solution ¢ (§) of Eq. (5) and the solu-
tion (11) of Eq. (10) are illustrated in Fig. 1a and b, respectively. It is seen from Fig. 1a that ¢ (§) has
meaning when £ >1, i.e., x>» A andt »vy -1,

When there is no dissipation in the medium the propagation of the disturbance is described by the
Korteweg—de Vries equation (1). It is shown in [2] that Eq. (1) is satisfied by the following isomorphous
solution;

Uz, t) = p @B Pt~ [z (B ™ (18)
Substituting (18) into (1) gives an equation for
=+ —2x=0, L=z@p)" (19)

If the damping as ¢ — = of the solution (19) is considered as exponential, then
v (8 =~ B dAi (§)/dt as L— o (20)
where Ai () is the Airy function and B is a coustant.

The behavior of y (¢) at negative and small positive values of { is found in 2] by numerical integra-
tion of (19) at positive values of B. The behavior of x (¢) at negative values of B is also clarified in this
article (Fig. 2). The solutions for B < 0 and B> 0 differ markedly inthe vicinity of the origin of coordinates.
For B < B, the function y(¢) for negative ¢ oscillates with slowly-increasing amplitude. For B > By
the solutions yx have a singularity. As numerical experiments show,

BW = —_B® = 335
Let us move to an examination of the nonstationary solutions of Eq. (2).

In [6, 7] corrections are found to the stationary solution of Eq. (1), when the dissipative terms in (2)
are small and the wave obtained is close to cnoidal. Using numerical integration a solution is found in
the present work for Eq. (2) for different ratios between the dispersion coefficient 8 and the absorption
parameters o and vy.

The Gaussian distribution
U (2,0) = ag exp[—(z —a)?/ ] 1)

was set as an initial condition for (2).
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The following periodic boundary conditions were considered:
U, ) = U(xz-+ L, (22)

To clarify the problem of the structure of the spectrum of the disturbance, the solution of Eq. (2) ob-
tained was expanded in a Fourier series

Uz, ty = >, U, exp (2nkz ) L) (23)

=1

The number N of harmonfes was chosen in such a way that the wavelength A N=L1/2 7 N of the N-th
harmonic was many times greater than the spatial step in integration.

To test the correctness of the calculations a solitary stationary solution of the Korteweg—de Vries
equation [1-3] was set up as the initial distribution for Eq. (2) at =y =0:

U (z, 0) == a sech? (a/12 B)": (z — ) (24)

Its variation with time did not exceed the error in integrating Eq. (2). The accuracy of the computa-
tion was controlled by conservation laws. At « =y =0 the conservation of the first two invariants of Eq. (1)
was tested:

L L
=S vde, . =(02da
)

)
The greatest relative errors in the course of the calculations were as follows:
AJy | Ty = 3108, AJy/ Jp = 5-1072

The law of variation of the wave impulse with time was checked in the general case (@ = 0,y # 0):

L L
SU(z, t)dz = exp (— ‘rt)SU(x, 0)dz

0

The dispersion parameter g, the amplitude a,, and the width [ of the initial distribution (21) were
chosen in such a way that the similarity parameter o =(a,l%/B)!/? was both greater and smaller than

ox=V12 [2].

In the case of very large o (0 > 04) a set of solitons [2, 3] is formed, The dependence of the square of the
Fourier component Ug? of the solution on time at ¢%=7.5-10%, « =10"*, andy =0 is shown in Fig. 3a, b.
It is seen that the relative contribution of the first harmonies (k=1, 2, 3) decreases with an inerease in t,
while that of the higher harmonics (k=6, 7) increases. The same thing happens at o2 =9, The behavior
of Ukz(‘c) in the case of a conservative medium (a =+ =0) is shown by dashed lines.

Thus, high-frequency absorption "destabilizes" the wave of excitation. This has been observed ex-
perimentally, for example, in the propagation of sound in a biphasic medium consisting of a liquid and gas
bubbles [5]. The situation is qualitatively the same for positive dispersion also. Destabilization of the
wave can be interpreted qualitatively using the stationary solution of Eq. (2).
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Let us shift to the variable r=x—Vi, settingy =0 and integrating the equation obtained once with the
condition U=U'=U" as X — «, obtaining

BU" —al’ + U*/2 —VU =0 (25)

1t follows from an analysis of this equation [2] that if « > ax = (¢ ﬁV)i/ 2, the profile of the wave be-
comes oscillatory. This can be generalized qualitatively to the case when the wave differs little from a
stationary wave, )

The numerical experiments show that the frequency of the oscillations increases in the process of
evolution. This oceurs mainly in the region where U > 0. Because of the law of conservation of an impulse
(at v =0) the area of the initial disturbance is conserved. Therefore, the amplitude of the oscillations grows
with a decrease in their wavelength. The role of the nonlinear effects intensifies with an increase in ampli-
tude, which leads to further driving of the high-frequency oscillations.

The computation was conducted to the point where the wavelength of the oscillations was much
greater than the step in integration with respect to x. Generally speaking, Eq. (2) becomes inapplicable on
the appearance of short-wave oscillations. Therefore,the examination of the evolution of high-frequency
oscillations has a qualitative character for the most part,

In the presence of low-frequency absorption the solutions of Eq. (2) become smoothedout. If &= 0and
the amplitude of the disturbance is small enough that nonlinear effects can be neglected, it is seen from (2)
that U~exp (—yt). When o # 0, the term containing y in Eq. (2) stops or at least slows the destabilization
of the wave depending on the relationship between the quantities «, 8, and y. This is confirmed by numeri-
cal experiments., We note that the effect of destabilization of a monochromatic wave in a nonlinear medium
having high-frequency absorption is analogous to "dissipative® instability of a wave in dielectrics and in a
plasma [8, 9].

The author thanks S. L. Musher for helpful discussions.
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